查看: 4094|回复: 0
打印 上一主题 下一主题

火电厂超低排放技术线路介绍

[复制链接]

1081

主题

1120

帖子

9967

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
9967
跳转到指定楼层
楼主
发表于 2015-7-14 09:06:44 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
一、背景
      2014年9月12日,国家发改委、国家环保部、国家能源局联合发文“关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知”中要求,稳步推进东部地区现役30万千瓦及以上公用燃煤发电机组和有条件的30万千瓦以下公用燃煤发电机组实施大气污染物排放浓度基本达到燃气轮机组排放限值的环保改造。燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值(即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50毫克/立方米。针对“行动计划”,国内火力发电集团提出了“超净排放(50、35、5(氮氧化物、二氧化硫、烟尘浓度))”、“近零排放”、“超低排放”、“绿色发电”等类似的口号。
二、目前主流的超低排放技术介绍
(一)脱硝改造
1、低低氮燃烧器改造
      常规低氮燃烧器约75%的NOX是在燃尽风区域产生的,低低氮燃烧器是通过改造燃烧器,调整二次风和燃尽风的配比,增加燃尽风的比例,大幅度减少燃尽风区域产生的NOX,从而有效降低NOX排放。

2、脱硝催化剂增加备用层
      催化剂加层是简单有效的提高脱硝效率、降低NOX排放的方法,目前在各大电厂超低排放改造中广泛使用。通过增加催化剂和喷氨量,可以进一步增加烟气中NOX和氨的反应量,减少NOX排放。
      小结:两种改造方式投资都比较高,相比之下,燃烧器改造的一次性投入大,而催化剂加层的运行成本很大,远期投资要比低低氮燃烧器要大得多。低氮燃烧器改造用于四角切圆直流燃烧器的比较多,改造也都比较成功,而用于对冲布置的旋流燃烧器的案例较少,而且经常会带来屏过结焦严重、超温等影响锅炉安全运行的问题,对于炉膛出口烟温和排烟温度较高、容易结焦的锅炉来说不是太合适。
相比之下脱硝催化剂加层的效果是比较确定的,脱硝加层会带来100-150Pa的阻力增加,影响不大,但是单纯依靠加层和增加喷氨量来提高脱硝效率,将会带来氨逃逸的增多,同时SO2转SO3的数量也会增大,逃逸的NH3与SO3反应生成NH4HSO4,该物质在150-190℃时为鼻涕状粘稠物质,增加的 NH4HSO4可能会造成空预器差压上升甚至造成堵塞,影响空预器的运行效率和运行安全。
(二)脱硫改造
1、脱硫除尘一体化技术
      单塔一体化脱硫除尘深度净化技术是国内自主研发的专有技术,该技术可在一个吸收塔内同时实现脱硫效率99%以上,除尘效率90%以上,满足二氧化硫排放35mg/Nm3、烟尘5mg/Nm3的超净排放要求。
超净脱硫除尘一体化装置是旋汇耦合装置、高效节能喷淋装置、管束式除尘装置三套系统优化结合的一体化设备,应用于湿法脱硫塔二氧化硫去除。
      旋汇耦合器基于多相紊流掺混的强化传质机理,通过产生气液湍流,大大提高传质速率,从而达到提高脱硫效率的目的。CFD模拟结果显示,加装耦合器后塔内的烟气分布更加均匀。

除了旋汇耦合器,脱硫除尘一体化技术还通过管束式除雾器、增加喷淋层等方式提高脱硫、除尘效率;脱硫除尘一体化技术主要具有如下优势:
      1)效率高。在一个吸收塔里同时完成脱硫除尘,目前可以达到现阶段最严格的深度超净脱除的要求,二氧化硫达到35mg/m3以下,粉尘5mg/m3以下。
      2)费用低。该技术在保证高性能的前提下,尽量降低能耗,比同类技术运行费用电耗低20-30%左右。
      3)投资少。该技术可以在原有装置基础上进行改造完成,对于新建电厂,不会额外增加占地和新建费用,投资比传统技术低40%左右。
      4)运行维护简单。该技术在设计研发过程中尽量简化操作,保证零件质量,降低更换频率,从用户角度减少零件的运行和维护压力。
2、单塔双分区高效脱硫除尘技术
      目前市面上的脱硫吸收塔浆液区基本都采用单区设计,单区设计具有如下限制:
      1)pH采用折中值5-5.5,一定程度兼顾吸收和氧化要求
      2)牺牲吸收能力,脱硫效率明显受限
      3)降低石膏结晶效果,石膏副产物长大受阻 。
      浆液双分区浆液池设计,将浆液池分隔成上下两层(上层低PH值区和下层高PH值区),上层主要负责氧化,下层主要负责吸收,通过功能分区可以明显提高脱硫效率。双分区设计具有如下优点:
      1)适合高含硫或高效率场合,效率可达99.3%
      2)浆池pH分区,氧化区4.9-5.5生成高纯石膏,吸收区5.3-6.1高效脱除SO2
      3)浆池小,停留时间可为3min,并且无任何塔外循环吸收装置
      4)配套专有射流搅拌措施,塔内无转动搅拌设施,检修维护方便
      5)吸收剂的利用率高、石膏纯度最高
      6)烟气阻力小
      除了浆液分区,该技术通过安装提效环、喷淋层加层、多孔分布器和等措施进一步提高脱硫效果;另外该技术采用多级高效机械除雾器,包括采用多级除雾器、管式除雾器、烟道除雾器的组合式除雾器,并在原烟道处设置喷雾除尘系统以提高除尘效果。
3、双托盘技术
      双托盘脱硫系统在原有单层托盘的基础上新增一层合金托盘,从而起到脱硫增效的作用。(如果原来没有设计托盘,则需安装2层托盘)。该技术在脱硫效率高于98%或煤种高含硫量时优势更为明显。
1)双托盘的气流均质作用
      烟气进入吸收塔后,首先通过塔内托盘,并与托盘上的液膜进行气、液相的均质调整,在吸收区域的整个高度以上可以实现气体与浆液的最佳接触。双托盘的气液相调整充分,气相均布好,脱硫增效很明显。
2)提高烟气与浆液的接触功效
      由于托盘可保持一定高度液膜,增加了烟气在吸收塔中的停留时间。当气体通过时,气液接触,可以起到充分吸收气体中部分污染成分的作用,从而有效降低液气比,提高了吸收剂的利用率。双托盘比单托盘多了一层液膜,气液相交换更为充分,从而增加了脱硫效率。
      双托盘技术效果可靠但是最大的劣势是阻力太大。另外双托盘一般是用于原有单托盘吸收塔的升级改造,如果对没有托盘的吸收塔改造双托盘,则喷淋层甚至整个辅机系统可能都要重新设计,成本大幅提高。
4、双塔双循环技术
      双循环技术源于德国,其目的是解决单吸收塔湿法脱硫的一个矛盾,湿法脱硫的反应分为两个阶段,即吸收阶段和氧化阶段,在SO2的吸收阶段要求PH值越高,吸收效果越好,而在Ca(HSO3)2的氧化阶段,要求PH值越低氧化效果越好。但是在同一个吸收塔浆液池内,无法二者兼顾,因此双循环技术在吸收塔外另设一个罐体用于SO2的吸收,而吸收塔浆液池则负责氧化。这与双分区技术异曲同工。
      双塔双循环技术其实是将辅助罐体升级为吸收塔,利用双循环技术,同时设置喷淋层和除雾器,使双循环的脱硫和除尘效果进一步增强。当然,双塔双循环的占地和辅机增设就更大了。单塔双循环的效果难以达到超低排放的要求,双塔双循环能够稳定达到要求,但是占地很大,不适合布置比较紧凑的电厂,且辅机增设较多,运营成本高。
(三)除尘技术
1、低低温电除尘
      低低温电除尘是在电除尘前增设热回收器,降低除尘器入口温度,利用了烟气体积流量随温度降低而变小和粉尘比电阻随温度降低而下降的特性。随温度降低,粉尘比电阻减少至1011Ω˙cm以下,此时的粉尘更容易被捕集;同时,随着烟气温度降低,烟气体积流量下降,在电除尘通流面积不变的情况下,流速明显降低,从而增加了烟气在电除尘内部的停留时间,所以,烟气流经电除尘器的温度范围在80~100℃之间时,除尘系统效率将会明显提高。
      回收的热量目前主要有两种用法,一种是MGGH,即在吸收塔后增加再加热器,利用烟气余热抬升烟气温度,防止下游设备腐蚀,无烟气泄露,可以基本消除白烟及石膏雨。另一种是低温省煤器,即将回收的热量用于加热汽机房凝结水。两种改造路线各有优势,MGGH具有很好的环保效果,而低温省煤器则可以有效降低煤耗,提高经济性。
2、湿式电除尘
       湿式电除尘器是一种用来处理含微量粉尘和微颗粒的新除尘设备,主要用来除去含湿气体中的尘、酸雾、水滴、气溶胶、臭味、PM2.5等有害物质。
      湿式电除尘器和与干式电除尘器的收尘原理相同,都是靠高压电晕放电使得粉尘荷电,荷电后的粉尘在电场力的作用下到达集尘板/管。干式电收尘器主要处理含水很低的干气体,湿式电除尘器主要处理含水较高乃至饱和的湿气体。在对集尘板/管上捕集到的粉尘清除方式上WESP与DESP有较大区别,干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而湿式电除尘器则采用定期冲洗的方式,使粉尘随着冲刷液的流动而清除。
      湿式电除尘器还可分为横流式(卧式)和竖流式(立式),横流式多为板式结构,气体流向为水平方向进出,结构类似干式电除尘器;竖流式多为管式机构,气体流向为垂直方向进出。一般来讲,同等通气截面积情况下竖流式湿式电除尘器效率为横流式的2倍。
      沉集在极板上的粉尘可以通过水将其冲洗下来。湿式清灰可以避免已捕集粉尘的再飞扬,达到很高的除尘效率。因无振打装置,运行也较可靠。
3、电袋复合除尘
      电袋复合式除尘器是有机结合了静电除尘和布袋除尘的特点,通过前级电场的预收尘、荷电作用和后级滤袋区过滤除尘的一种高效除尘器,它充分发挥电除尘器和布袋除尘器各自的除尘优势,以及两者相结合产生新的性能优点,弥补了电除尘器和布袋除尘器的除尘缺点。该复合型除尘器具有效率高,稳定的优点,目前在国内火力发电机组尤其是中小型机组应用较多,最近国内部分大型机组也开始上马电袋除尘。
电袋复合除尘器近年来持续发展,目前出现了超长滤袋和覆膜过滤等技术,过滤精度和使用性能都有所提升,已经能够达到5mg以下烟尘超低排放的标准。
      但是从已经投产的电袋复合除尘器来看,其主要面临的几个问题仍然难以解决:
      1)差压比较高,并且随着时间的增加逐渐上升。由于布袋除尘采用的是过滤原理,本身的阻力高达1000pa左右,同时随着过滤孔被逐渐堵塞难以清理,每年会有200-300pa的阻力增加,这会造成电耗增加,甚至影响风机运行安全;
      2)布袋寿命较短,维护费用高。布袋每年会有一定的破损率,一般保证每年≤1%,但由于单台机布袋数量高达一万多个,而每个布袋价值上千块,每年仅布袋更换费用就要近十几万;
      3)一旦布袋发生破损,局部失去过滤作用,将会导致烟尘浓度上升;
      4)设计寿命仅约3万小时,用4-5年后全部更换滤袋的成本十分高昂,约在2000万左右,折合每年400万以上。
4、电除尘高频电源改造
     电除尘高频电源改造由于成本较低,且效果明显,成为目前在各个电厂超低排放改造中普遍使用的一种辅助除尘增效改造方式。高频电源相比普通工频电源具有如下优势:
1)更好的节能效果
     高频电源具有高达93%以上的电能转换效率,在电场所需相同的功率下,可比常规电源更小的输入功率(约20%),具有节能效果。有更好的荷电强度,在保证了粉尘充分荷电的基础上,可以大幅度减少电场供电功率,从而减少无效的电场电功率。
2)可提高电晕功率
      高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。
3)更好的电源适应性
      与工频电源相比,高频电源的适应性更强。高频电源的输出由一系列的高频脉冲构成,可以根据电除尘器的工况提供最合适的电压波形。间歇供电时,供电脉宽最小可达到1ms,而工频电源最小为10ms,可任意调节占空比,具有更灵活的间歇比组合,可有效抑制反电晕现象,特别适用于高比电阻粉尘工况。
4)更好的火花控制特性:
      高频电源的火花关断时间<10μs,而工频电源需10ms,火花能量很小,电场恢复快,提高了电场的平均电压,从而可提高了除尘效率。
      湿式电除尘和低低温电除尘都具有十分明显的除尘效果,并且都能去除部分SO3,湿式电除尘还具有脱汞、去除酸雾、水滴、气溶胶、臭味等作用,但另一方面在使用过程中也会产生废水。二者的比较详如下表。单纯从除尘方面的投资和运行维护的角度来讲,湿电除尘略占优势,但是低低温电除尘施工工期较短,如果采用MGGH,就能去除“白烟”,对于改善电厂的形象具有非常正面的作用,MGGH能够减少烟气冷凝,大大减缓强酸性冷凝水对烟囱的腐蚀速度,解决电厂目前烟囱腐蚀严重的问题,大大减少维护成本、提高设备安全性。而如果采用低温省煤器,则可以在提高除尘性能的同时回收烟气余热,降低煤耗,效果也很明显,但是无法解决白烟和烟囱腐蚀的问题。同时,用低低温电除尘降低吸收塔入口烟温,可以大大减少吸收塔的蒸发量,节水效果十分明显。

  低低温电除尘尤其是MGGH虽然具有明显的优势,但是其存在一个较大的隐患,即烟气低温腐蚀问题。一旦将排烟温度降低到100℃以下,达到酸露点以下,管道、电除尘、风机、烟道等可能会比较严重的腐蚀。目前主流的管道用钢为316L和ND钢,虽然耐酸性能优良,但是由于MGGH在国内应用时间短,能否长期低于硫酸的腐蚀,尚未得到验证。
      表2是整理的各种改造项目的投资、工期和带来的阻力上升情况,由于各个电厂改造时间、现场状况、改造单位等的不同,其投资、工期和阻力上升情况差别都会比较大,只能作为电厂改造选择的一个参考。

三、组合路线的选择
1、投资最省的路线
      脱硫除尘一体化+脱硝催化剂加层+高频电源改造,单机投资5000万-1亿,可以节约大量投资,同时运行阻力很低,设备增加很少,运行维护成本都最小化,停机工期最短可以控制在40天以内,各方面优势十分明显。
      由于该技术投入应用不久,虽然很快受到市场的认可,但是长期除尘稳定性尚待验证,有一定的风险。
2、性能稳妥、投资和运维成本相对较低的路线
1)脱硫除尘一体化+脱硝催化剂加层+高频电源改造+MGGH
      单台机投资大约1-1.5亿,停机工期40天,可以确保脱硫、除尘、脱硝全面、长期达到超低排放要求,同时能够解决 “白烟”和烟囱腐蚀问题。
2)脱硫除尘一体化+脱硝催化剂加层+高频电源改造+湿电除尘
      单台机投资约1-1.3亿,停机工期50天,可以确保脱硫、除尘、脱硝全面、长期达到超低排放要求,终端除尘效果会比线路1更加低,同时能够脱除酸雾、水滴、气溶胶、臭味等,但是无法消除“白烟”和解决烟囱腐蚀问题。
3)单塔双分区脱硫除尘技术+脱硝催化剂加层+高频电源改造+MGGH
      投资与路线1)接近,停机工期50天,由于MGGH具有良好的除尘效果,因此该技术也能够达到超低排放要求,也能够消除“白烟”和解决烟囱腐蚀问题。不过由于该技术的除尘效果相对较差,相应对于石膏的脱除效果也会比较差,因此从吸收塔携带的石膏将会影响最终的固体颗粒排放值,是否能够持续控制在 5mg/Nm³以下有待考验。
4)单塔双分区脱硫除尘技术+脱硝催化剂加层+高频电源改造+湿电除尘
      为了解决路线3)的问题,可以将MGGH改为湿电除尘,可以解决末端烟尘排放较高的问题,投资有所下降,停机工期50天,缺点是不能解决白烟和烟囱腐蚀问题。如果同时上马湿电除尘和低低温除尘器,可以同时解决上述问题,但是投资和运维成本又太高。
5)同上路线,但在低低温电除尘上选用低温省煤器,停机工期50天,可以降低煤耗,缺点是不能解决白烟和烟囱腐蚀问题。
3、全面、稳妥的技术路线
      早期改造的超低排放线路,在除尘上很多都采用低低温电除尘+湿式电除尘的改造方式,余量较大,但是工程量、投资和运维成本都很高。
      小结:自从2014年国内开始大面积快速上马超低排放技术以来,在巨大的市场利益驱动下,超低排放的技术本身也在快速发展,主要表现在3个方面:
1、排放越来越高效;
2、技术种类越来越丰富,同一类技术的创新越来越多样化;
3、多种污染物治理的集成度越来越高,尤其是在脱硫系统集成粉尘治理的方面。
      值得注意的是,这些进步还在不断发展变化中,这使得实现超低排放的成本快速下降,而排放效果却越来越好,这将有利于电厂今后改造的实施。
四、几个需要关注的问题
(一)设备腐蚀问题
1、低低温除尘器的腐蚀
      如前所述,使用低低温除尘器降低烟温后,管式换热器、烟道、电除尘和风机等都可能出现腐蚀。目前的低低温除尘器宣称自己采用的材料能够抵御酸腐蚀,同时换热器降低烟温,SO3冷凝后大部分将被灰尘吸附(95%以上),并被电除尘脱除,从而避免电除尘和烟道、风机等的腐蚀。但实际效果仍待时间检验。目前投产的MGGH投用时间基本都只有半年多,一方面时间较短,另一方面作为生产单位也没有公开腐蚀情况的意愿(如果腐蚀的话),因此该问题将成为电厂改造调研的一个难点;
2、湿电除尘的腐蚀
      湿电除尘布置在吸收塔的下游,经过吸收塔脱硫后,烟气中的SO2大为降低,但是吸收塔对于SO3的脱除是很有限的,加上烟气中水分大为增加,SO3基本都以硫酸的形式存在,因此对设备的腐蚀能力是很强的。目前湿电除尘外壳主要采用碳钢喷涂玻璃鳞片,极板、极线等内部设备主要采用316L或导电玻璃钢,316L虽然耐酸性较好,但是长期使用的仍会发生腐蚀,使用寿命有待评估。因此从耐腐蚀的角度考虑,导电玻璃钢的性能更优,但是其使用效果需要进一步验证。
3、烟囱的腐蚀
      如果使用MGGH,则烟囱烟温可以抬升到80℃左右,基本消除白烟,同时由于烟温较高,水汽在烟囱壁上的冷凝量大大减少,可以很大程度上缓解烟囱内筒的腐蚀问题,大大减少烟囱的维护成本,提高安全性。但受限于烟温,烟气冷凝仍然无法完全消除,因此腐蚀仍然无法完全避免。
(二)改造后阻力上升问题
      现有超低排放改造的大部分项目都会导致烟气阻力上升,因此在确定改造线路时必须同步评估烟气阻力的上升量和现有风机的余量,确定是否需要进行引风机增容改造。目前部分电厂在进行引风机扩容时同步进行了增引合一的改造,节电效果明显,建议同步考虑。
五、超低排放改造工作的建议
1、加快调研进度,逐步启动可研招标工作
      要进行调研工作, 确定主要考虑的线路,同时对同类线路的投产机组开展深入调研,了解改造效果和经验教训,为后续工作开展提供参考;同时,可研的招标/委托在程序上也需要占用较多时间,应尽快启动可研的招标/委托工作,确保可研工作的顺利开展。
2、进一步发挥超低排放小组的专职攻关作用
      由于超低排放改造工程浩大,各电厂一般从前期就成立超低排放工作组专职开展改造相关工作, 但由于电厂生产任务较重,很可能一直没有人专职从事改造工作。随着时间的日益紧迫,建议电厂考虑适时调整调配人力,确保改造的相关工作进度。
3、持续关注超低排放技术的发展变化,及时作出调整改进
      从发改委2014年9月份发布超低排放行动计划以来,至今不到1年,在这么短的时间内,超低排放项目大量上马,各种改造路线的实施效果还没有得到持久的检验,问题也没有充分的暴露;同时各大厂商为了占领市场,也在加大投入进行技术攻关,相关技术更新换代很快,因此在剩余2-3年内,电厂仍要持续关注领域内的技术革新情况,关注各电厂相关技术应用的情况,吸取经验教训,确保超低排放的效果。
4、超前考虑
      在可研和设计上要超前考虑,为今后进一步降低排放指标和汞等重金属的脱除留下余地。

文章转自:北极星电力

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

返回列表 快速回复 返回顶部